

Benefits of Using the New Transportable INFICON Micro GC Fusion with Fast Column Temperature Ramping for Fixed Gas and Hydrocarbon Analysis

Debbie Hutt
INFICON
Gulf Coast Conference
October 16, 2013

Outline

- Micro GC Fusion Introduction
 - Known performance meets new technology
 - Fusion Architecture
- Micro GC Fusion Features
 - User interface
 - Integrated sample conditioner
 - Isothermal vs. temperature ramping
- Micro GC Fusion Applications
- Ten Run Overlay
- Conclusion

Micro GC Fusion Introduction

Known Performance Meets New Technology

- Micro GC Fusion builds on proven microelectromechanical systems (MEMS) based 3000 Micro GC technology
- Micro GC Fusion new features include:
 - Fast temperature ramping
 - Front panel LED display
 - Solid-state hard drive for data storage
 - Web-based interface
 - Optional integrated sample conditioner
 - USB ports

Micro GC Fusion Architecture

- Micro GC Fusion utilizes a modular architecture
- Each module contains:
 - MEMs based injectors
 - Resistively heated fused silica capillary columns
 - MEMs based micro thermal conductivity detector (µTCD)

Micro GC Fusion Injectors

- Backflush
 - Prevents contaminants from entering the column
 - Reduces run time
 - Prevents ghost peaks
- Variable Volume
 - General analysis from 10 ppm to 100%
- Large Variable Volume
 - For analysis down to 1 ppm
- Fixed Volume
 - Offers the best precision for components above 500 ppm

Micro GC Fusion Columns

- Micro GC Fusion supports two types of columns:
 - Porous <u>Layer Open Tubular (PLOT)</u>
 - Solid particles coated on the surface of the tubing
 - Molsieve 5A, PLOT U, PLOT Q, Alumina, Carbon
 - Wall Coated Open Tubular (WCOT)
 - Liquid phase bonded to the surface of the tubing
 - Polydimethylsiloxane (OV-1)
- Columns can be temperature programmed or operated isothermally

Resistively heated capillary column

Micro GC Fusion Detector

- Micro GC Fusion uses a MEMS Thermal Conductivity Detector (TCD)
- Compares the thermal conductivity of the gas from the reference column vs. the gas from the analytical column
 - Uses a Wheatstone bridge design
- Linear from low <u>parts-per-million</u> (ppm) to 100%

Micro GC Fusion Features

User Interface

- Micro GC Fusion utilizes an LED front panel display with on-board data storage
 - Operate the instrument without a PC
 - Multi-touch LED display can handle simple operations and status updates
- Connect wirelessly through Wi-Fi to an external computing device
- Or, connect directly via Ethernet

User Interface

 Web-based graphical user interface (GUI) is independent of operating system and license free

Integrated Sample Conditioner

- An optional integrated sample conditioner can be configured
- The sample conditioner allows for:
 - Sample pressures up to 1000 psi
 - Sample temperature control at 100°C
 - Filtering of particulates
- A quick connect replaces the standard 1/16" inlet

Temperature Programming

- Temperature ramping based on resistive column heating allows for:
 - Faster runs
 - Rapid column cleaning
 - Sharper peaks
 - Expanded application range (exertended natural gas analysis)
- Ramping profile is independently optimized for each module
- Cooldown time is optimized to achieve short cycle times

Isothermal vs. Temperature Programming

- Isothermal runs result in broad, late eluting peaks
- Fast temperature ramping improves peak shape, run time, and column cleaning
- Example Propane
 - Isothermal ~160 seconds
 - Temperature ramping ~50 seconds
 - Increase in peak height

Column: PLOT Q Injector: Variable

Ramp: $50^{\circ}C \rightarrow 90^{\circ}C \rightarrow 240^{\circ}C$ (2°C/s, 2.2°C/s)

Improved Peak Shape

Isothermal

Temperature Programming

Micro GC Fusion Applications

Micro GC Fusion Applications by Column

The chart below highlights some of the columns available for the Fusion

Column	Components
Molsieve 5A	H ₂ , O2, N2, methane, CO
PLOT U	Air, methane, CO ₂ , ethane, ethylene, acetylene, propane/propylene, 1,2-propadiene, methyl acetylene, H ₂ S
PLOT Q	Air, methane, CO ₂ , ethane, ethylene/ acetylene, propane, propylene, C4-C8 hydrocarbons, H ₂ S
Alumina	C4 and C5 hydrocarbons and olefins, 1,3-butadiene
Carbon PLOT	H ₂ , air, methane, CO, CO ₂ , ethane, ethylene, acetylene
PDMS (OV-1)	C4-C12 hydrocarbons, H ₂ S, VOCs

PLOT column
WCOT column

Expanded Application Range

- Traditionally, the PLOT Q is used for C1-C3 analysis
- Using temperature programming, one module can be used for C1-C8 Plus analysis

Column: PLOT Q Injector: Variable

Ramp: 45°C →250°C (4°C/s)

Expanded Application Range

Expanded view of C6-C8 Plus compounds

Natural Gas Analysis Extended

 The second channel for natural gas analysis is suited for extended hydrocarbon analysis

Column: PDMS

Ramp: 50°C →130°C→280°C (2°C/s, 5°C/s)

Natural Gas Extended Analysis

- Channel B: PDMS with temperature programming
 - Straight chain hydrocarbons (C6 to C12) overlaid with extended natural gas calibration gas cylinder
 - Heated sample

Column: PDMS

Ramp: $50^{\circ}C \rightarrow 130^{\circ}C \rightarrow 280^{\circ}C (2^{\circ}C/s, 5^{\circ}C/s)$

Dissolved Gas Analysis

- The Carbon PLOT column analyzes typical dissolved gases or transformer oil gases
- Channel: Carbon PLOT with temperature programming

Fixed Gas Analysis

- The Molsieve column analyzes typical fixed gases found in syngas, landfill gas, fuel cell gases, and refinery gases
- Channel: Molsieve 5A PLOT

GCC-23

Backflush Capabilities

Without backflush optimization:

With backflush optimization

GCC-24

Ten Run Overlay

PLOT Q

Conclusion

- Micro GC Fusion combines new features with proven technology
- Rapid temperature ramping is ideal for fast analysis, column cleaning, and expanded application range
- The new user interface and GUI allow for communication to any webenabled device without relying on operating system compatibility

Sensitive. Smart. East Going.

Visit booth #320

or

Visit our website www.INFICON.com for more information

Questions?

